Simultaneous Whole-Brain Segmentation and White Matter Lesion Detection Using Contrast-Adaptive Probabilistic Models

نویسندگان

  • Oula Puonti
  • Koenraad Van Leemput
چکیده

In this paper we propose a new generative model for simultaneous brain parcellation and white matter lesion segmentation from multi-contrast magnetic resonance images. The method combines an existing whole-brain segmentation technique with a novel spatial lesion model based on a convolutional restricted Boltzmann machine. Unlike current state-of-the-art lesion detection techniques based on discriminative modeling, the proposed method is not tuned to one specific scanner or imaging protocol, and simultaneously segments dozens of neuroanatomical structures. Experiments on a public benchmark dataset in multiple sclerosis indicate that the method’s lesion segmentation accuracy compares well to that of the current state-of-the-art in the field, while additionally providing robust whole-brain segmentations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

AUTOMATIC LONGITUDINAL MULTIPLE SCLEROSIS LESION SEGMENTATION: MSmetrix

Accurate and consistent multiple sclerosis (MS) brain lesion segmentation and volumetry could be an added value to MS clinicians. In this paper, MSmetrix is presented, an automatic and reliable method, which uses 3D T1-weighted and FLAIR MR images in a probabilistic model to detect white matter lesions as an outlier with respect to the normal brain, while segmenting the brain tissue into grey m...

متن کامل

Evaluating the effects of white matter multiple sclerosis lesions on the volume estimation of 6 brain tissue segmentation methods.

BACKGROUND AND PURPOSE The accuracy of automatic tissue segmentation methods can be affected by the presence of hypointense white matter lesions during the tissue segmentation process. Our aim was to evaluate the impact of MS white matter lesions on the brain tissue measurements of 6 well-known segmentation techniques. These include straightforward techniques such as Artificial Neural Network a...

متن کامل

Stratified mixture modeling for segmentation of white-matter lesions in brain MR images

Accurate characterization of white-matter lesions from magnetic resonance (MR) images has increasing importance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an objective and effective way by automated lesion segmentation. This usually involves modeling the whole-brain MR intensity distribution, however, capturing various sources of MR inten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015